|
In chemistry, an ideal solution or ideal mixture is a solution with thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero〔''A to Z of Thermodynamics'' Pierre Perrot ISBN 0-19-856556-9〕 as is the volume change on mixing; the closer to zero the enthalpy of solution is, the more "ideal" the behavior of the solution becomes. The vapor pressure of the solution obeys Raoult's law, and the activity coefficient of each component (which measures deviation from ideality) is equal to one. The concept of an ideal solution is fundamental to chemical thermodynamics and its applications, such as the use of colligative properties. == Physical origin == Ideality of solutions is analogous to ideality for gases, with the important difference that intermolecular interactions in liquids are strong and cannot simply be neglected as they can for ideal gases. Instead we assume that the mean strength of the interactions are the same between all the molecules of the solution. More formally, for a mix of molecules of A and B, the interactions between unlike neighbors (UAB) and like neighbors UAA and UBB must be of the same average strength, i.e., 2 UAB = UAA + UBB and the longer-range interactions must be nil (or at least indistinguishable). If the molecular forces are the same between AA, AB and BB, i.e., UAB = UAA = UBB, then the solution is automatically ideal. If the molecules are almost identical chemically, e.g., 1-butanol and 2-butanol, then the solution will be almost ideal. Since the interaction energies between A and B are almost equal, it follows that there is a very small overall energy (enthalpy) change when the substances are mixed. The more dissimilar the nature of A and B, the more strongly the solution is expected to deviate from ideality. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Ideal solution」の詳細全文を読む スポンサード リンク
|